
Journal of' Statistical Physics, Vol. 48, Nos. 5/6, 1987 

L o c a l / / - T h e o r e m  for  t h e  R e v i s e d  E n s k o g  E q u a t i o n  

J. Piasecki 1,2 

Received March 25, 1987 

A simple derivation of the local H-theorem for the revised Enskog equation is 
presented. 
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1. I N T R O D U C T I O N  

I consider here a fluid composed  of identical hard spheres of diameter  a. 
Within Enskog 's  kinetic theory the state of the fluid is described by the 
one-part icle distr ibution f l ( r .  v; t), representing at t ime t the number  den- 
sity of  particles at point  r with velocity v. In the course of  t ime f~(r, v; t) 
changes due to free s t reaming and collisions. For  hard spheres the dura t ion  
of binary encounters  is zero. When  two particles of equal mass collide, their 
velocities v l, v2 take ins tantaneously  postcoll isional values 

v'l = vl -- ~(~: �9 v~2), v~ =v2  +~(~"  vl2 ) (1.1) 

where v~2=v  1 - v 2 ,  and ~ is a unit  vector  along the line passing through 
the centers of the spheres at the m o m e n t  of impact.  Correspondingly ,  the 
exact rate of change of the distr ibution f~(r, v; t) due to collisions is 
given by 

c?t/ooll ( r l ,  

' '- t) ,5(r~2 - a~) x [/2(r~,  Vl, r2, v2, 

- f 2 ( r l ,  Vl, r2, v2; t) cS(rl2 + a~)] (1.2) 
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The step function 0 and the distributions 6 in Eq. (t.2) impose the 
conditions t -  v12 > 0 and 1r121 = lrl - rzl = a, respectively, which must be 
satisfied at the moment of impact. The density of pairs of particles in 
collisional configurations is described by the two-particle distribution f2 
[Eq. (1.2) is the first of the infinite BBGKY hierarchy for hard spheres; see, 
e.g., Ref. 1 ]. 

The approximation leading to Enskog's theory consists in assuming 
that correlations between the particles entering into collision at time t 
coincide with those of an equilibrium inhomogeneous fluid whose density 
field equals 

n(r, t) = f dv fl(r,  v; t) (1.3) 

Therefore, within Enskog's approach, one inserts into the exact formula 
(1.2) the approximation 

f2 ( r , , v i , r2 ,  v 2 ; t ) ~ - f ~ ( r l , v l , r 2 ,  v2; t) 

= f l ( r l ,  vl; t ) f l ( r2,  v2; t) g2(rl, r2] n(t)) (1.4) 

Although no correlations between the velocities are retained, Eq. (1.4) 
takes correctly into account the mutual impenetrability of the spheres, and 
this in an inhomogeneous state corresponding to the momentary density 
field (1.3). The equilibrium pair distribution g2(rl, r2]n(t)) is a functional 
of the density field. 

Combining Eqs. (1.2) and (1.4), and taking into account the effect of 
free streaming, one obtains the revised Enskog equation/2) 

-k-V 1" f l ( r l ,  Vl;t) 

E 

\ ~?t/oo, 

E r ' '" t) 6(r12-aZ) • I f 2 (  1, Vl ,  r2, v2, 

E r t) c5(r1~ + a~:)] (1.5) - f ~ (  1, vl, r2, v2; 

The term "revised" recalls the fact that in the original Enskog equation the 
function g2(rl,r21n(t)) was interpreted as corresponding to a 
homogeneous rather than inhomogeneous equilibrium state/3) 
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The global H-theorem for the kinetic equation (1.5) was proved 
(under periodic boundary conditions) by R6sibois. (4~ He found the 
appropriate generalization of the famous Boltzmann H-functional by using 
the relation 

H(t) = --kB ~ S(t) (1.6) 

where k B is Boltzmann's constant and S(t) is the nonequilibrium entropy 
Ea functional of fl(r, v; t)], suitably defined to correspond to Enskog's 
approximate descrition of the fluid. S(t) was shown to be an increasing 
function of time, yielding at equilibrium the exact entropy of the hard 
sphere fluid. 

The aim of this paper is to provide a simple derivation of the local 
formulation of the H-theorem. The question is thus to define the non- 
equilibrium entropy density s(r[f~(t)) as a functional of the one-particle 
distribution fl(r, v; t) and show that it satisfies the local balance equation 
with a nonnegative source term, vanishing only at complete equilibrium. 
This has been already achieved by a rather complicated method involving 
formal series expansions, ~5) a method inspired by R6sibois' fundamental 
work. 14/ No series expansions will be used here. The simplicity of the 
present derivation follows in fact from adopting the most natural definition 
of the nonequilibrium entropy density (Section 2), in full harmony with the 
physical content of the approximation that Enskog's theory represents. 

2. E N T R O P Y  D E N S I T Y  W I T H I N  E N S K O G ' S  T H E O R Y  

In view of the assumption (1.4) underlying Enskog's kinetic theory, I 
now define the entropy density (per particle) sE(rlf~(t)) by adopting 
simply the formula that applies to inhomogeneous equilibrium states (see 
the review article by Evans(6)). This most natural choice leads to the 
formula 

sE(rrf l( t ))=sB(rl f l ( t ))+s .... (rln(t)) (2.l) 

term corresponds to Boltzmann's theory (ideal gas where the first 
contribution) 

n(r, t) sBirl f l(t)) 

= -k~  f dv f~(r, v; t){tn[h3fl(r, v; t)] - 1 } (2.2) 

(h is Planck's constant), and the second term describes the effect of 
correlations 

f2 S . . . .  (r[n(t))=kB d~cl(rlom(t)) (2.3) 
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s .... is expressed in Eq. (2.3) in terms of the equilibrium one-particle direct 
correlation function cl(rln(t)), a functional of the density field n(r, t) 
related to the pair distribution g2(r~,r2ln(t)) by the hard sphere 
equilibrium hierarchy equation 

~r---~ c l ( r l  In(t))  

=f dr2 f d~:a2~.O(rl2-a~.)n(r2, t) g2(rl,r2tn(t)) (2.4) 

Formulas (2.3) and (2.4) are well known in the theory of inhomogeneous 
equilibrium fluids (61 [see also Eq. (25b) in Ref. 4]. The function c~ appears 
as an effective chemical potential corresponding to the density field n(r, t). 

3. LOCAL H - T H E O R E M  

I proceed now to establish the local balance equation for the entropy 
density (2.t). Although the calculation involving the ideal gas contribution 
(2.2) has been already performed elsewhere, (3'4) I reproduce it briefly here 
for completeness. 

The Enskog equation (1.5) implies the continuity equation 

an 0 
~-~+N.  (un) = 0 (3.1) 

where the mean velocity field u(r, t) is defined by 

n(r, t) u(r, t) =- f dv vfl(r, v, t) (3.2) 

Taking the time derivative of Eq. (2.2), one readily finds 

(nsB)= Q _ j B k ) _ k B  f dr1 (c~fl] E ln(h3fl) (3.3) 

where j~k is the kinematic Boltzmann entropy current density, 

Bk f J~, (r, t) = --kB dv I v -  u(r, t)] fl(r, v; t) lnEh3fl(r, v; t)] (3.4) 

Using Eq. (1.5) and the change of the integration variables (vl, v 2, ~:) 
(v'1, v~, -~:), one can rewrite the last term in Eq. (3.3) in the form 

f (  t) 
k B f dr2 f d# 6(r12 + a~.) f2E(rt, Vl, r2, v2; t) in Jl ' r1 '  

V 1 
f l (r l ,  vl; t) 

(3.5) 
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where 

d/2 = dr1 d% d~. a2(~ �9 v12) ~9(~. v12) (3.6) 

Now the crucial remark is that the antisymmetric part of the integrand in 
Eq. (3.5) with respect to the permutation of variables rl and r2 contributes 
to the flow term due to the identity 

f dr2 I-F(r i, r2) - F(r2, r l ) ]  

0rl 

The symmetric part will be interpreted as the source term. We thus rewrite 
Eq. (3.3) in the form 

(nsB)+-~r'(UnsB + (3.8) 

where the "potential" part of the entropy current density is given by 

kBf "1 J~P(rl, t) = ~-  Jo d2 f d/.l a~ 

xf~( r l  --2a$:, vl, rl + (1 --2) a~, v2; t) 

x In f l ( r l  --2a~, V'l; t) 
f l ( r l  ~ ) . ~ ,  Vl ; t) 

(3.9) 

whereas the source term is given by 

x lnf~(r ~ , v]; t ) L ( r l  +a,~, v~; t) 
A(r , ,  v, ; t)--~l(r I + a~, v2 ; t) 

(3.t0) 

We now study the balance equation for the correlation part of the 
entropy density, defined by Eq. (2.3). Using the continuity equation (3.1) 
and the symmetry of the functional derivatives 

6s . . . .  ( r~ ln ( t ) )  6s ..... ( r~ ln ( t ) )  
(3.11) 

6n(r2, t) 6n(rl, t) 
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one readily finds 

8 .... g (~s ) + ~ .  (u~s .... )= j dr2n(r,, t) u(r2, t) ?5 

x 1 
The gradient of s .... can be evaluated with the help of Eqs. (2.3 and (2.4), 
yielding the formula 

n(r2, t)~-J~-s . . . .  (re I n(t)) 
0r2 

=kB f dr3 f d~,a2~: c5(r23-a~)n(r2, t) n(r3, t) 

f0 x d~ c~g2(r2, r31 c~n(t)) (3.13) 

Substituting Eq. (3.13) into the right-hand side of Eq. (3.12), we find the 
sum of two terms. The first results from the action of the functional 
derivative on the product of densities n(r2, r) n(r3, t). It reads 

f dr2 f dg a2~.[u(r~, t) - u(r2, t)] 8(r~2 - a~:) n(r, ,  t) n(r2, t) kB 

;2 x dc~ c~g2(rl, r2 [ c~n(t)) (3.14) 

The second, in which the derivative acts on the distribution ga can be 
conveniently written as 

~ f  dr:f dr3f d~.a2~." [u(r2, t ) -u(r3,  t)] (~(r23-a~.) 

fo 8g2(r2' r3 I ~n(t)) 
x n(rl, t) n(r 2, t) n(r3, t) d~ ~ c~n(rl, t) (3.15) 

Transforming then the term (3.14) with the help of the identity 

fo'dC~ ~g2(rl, r2 [ ~n(t)) 

1 
= ~  g2(rl, r21 n(t)) 

I f f] 6g2(r,,r21~n(t)) (3.16) 
2 dr3 n(r3, t) d~ ~ 6n(r3, t) 
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we can write the sum of (3.14) and (3.15) as 

~ f dr2 f d~a2~" [u(ri, t)-u(r2, t)] 

• b(rt2 - a~) n(r 1, t) n(r2, t) g2(rl, r 2 in(t)) 

+ ~  f dr 2 f dr 3 f d~.a2~; �9 {[u(r2, t ) - u ( r  3, t)] 8(r23-a~)  

- [u(rl,  t ) - u ( r  3, t)] 6(r13-a~)} 

~o 6g2(r2' r31 ~n(t)) 
• n(rl, t) n(r2, t) n(r3, t) det ~ 6n(rl, t) (3.17) 

In the first term in Eq. (3.17) the integrand is symmetric with respect to 
variables rl, r2. We interpret it as a source term. With the notation (1.4) 
and (3.6) it takes the form 

a,~ (r ~, t) =-k-~ f d/~ [f2E(r, , v', , r~ + a~;, v~', t) 

E r - f 2 (  l, v~, r~ +a~., %; t)] (3.18) 

In the second term in Eq. (3.17) the integrand is antisymmetric under 
the permutation (r~, r2) ~ (r2, rl). We can thus apply Eq. (3.7), finding the 
contribution to the entropy flow of the form 

J ~ ~  t )  

- 2 o d2 d r r  d#{.fl(rl-Xr, vl;t)fl(rj-2r-a~,v'2;t ) 

- f l ( r i - 2 r ,  v j ; t ) f ~ ( r ~ - 2 r ~ - a L  v2; t)} n(ri + ( 1 - 2 ) r ,  t) 

I X6n(rl +(1-;t)r,t)  o de~g2(rl-)x'rl-2r-a~lcm(t)) (3.19) 

where again the notation (3.6) has been used. In terms of quantities (3.18) 
and (3.19), Eq. (3.12) becomes 

~t + 8_~_. (uns .... + j~o~) (3.20) (ns .... ) #rl = O'~Orr 

Adding up Eq. (3.8) and (3.20), we arrive at the balance equation for the 
total entropy density (2.1): 

0 t  (r /sE) + " (UnSE "{- ,JE,  E - -  , ; = ~ s  ( 3 . 2 1 )  
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The flow term is the sum of the convective current density uns E and the 
three contributions given by Eqs. (3.4) and (3.19). We thus have 

E f " ,Is (rl, t) = - k  s dvl[-v 1 - u(rl, t)] f l ( r l ,  vl, t) ln[h3fl(rl ,  v 1 ; t)] 

+?f~ ds d#{a~.f~(rl-2a~.,vl,rl+(1-2) a~:,v2;t) 

f l ( r l -  2a~., v'l; t) 

- f dr r [ f~ ( r  1 - 2r, vl, rl - 2r - a~:, v2; t) 

- f ~ ( r ,  - 2r, vl, r~ - ).r - a~:, v2; t)] 

f~ gin  g2(rl-/~r,r,-2r-a~l~n(t))} 
• + ( 1 - s  t) d ~  6n(rl + (1 2) r, t) 

(3.22) 

E is obtained by adding up the contributions (3.10) and The source term a s 
(3.18). It is thus equal to 

cr (rl, t) - d# (rl, Vl, rl  + a~, v2, t) 
- 2  

- f ~ ( r l ,  v,, r l+a~ ,  v2; t) 

E , , .  , . 7  
�9 In f ~ ( r l ' v l ' r l + a ~ ' v 2 ' ~ ) J  (3.23) -f (rl, vl, r l +  v2, ,) 

As x - y +  y ln(y/x)>>-O, for x > 0 ,  y > 0 ,  it follows from (3.23) that 

a~(r, t) t> 0 (3.24) 

The fundamental inequality (3.24) enables us indeed to consider the 
intuitive definition (2.1)-(2.3) as a proper generalization of the concept of 
the entropy density s(r, t) to nonequilibrium states whose evolution is 
described by the revised Enskog equation (1.5). With the entropy produc- 
tion nonnegative, Eq. (3.21) can be looked upon as a local formulation of 
the H-theorem for the kinetic equation (1.5). In fact, integrating the density 
h(r, t )=  -k~n(r, t)sE(r, t) over the volume of the fluid, one recovers the 
H-functional constructed by R6sibois. The condition for H to reach a 
stationary value is equivalent to vanishing of the entropy source (3.23), i.e., 

f l ( r l ,  vl) f l ( r l  + a~., v2) =- f l ( r l ,  v'l) f l ( r l +  a~, v~) (3.25) 
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The consequences of Eq. (3.25) [combined with the Enskog equation 
(1.5)] already have been discussed by R6sibois (under periodic boundary 
conditions). Clearly, the equilibrium Maxwell distribution (with constant 
density) satisfies Eq. (3.25). Whether this is the only solution (for more 
general boundary conditions) remains to be clarified. 
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